Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 356
Filtrar
1.
J Agric Food Chem ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639269

RESUMO

Understanding the transport mechanism of the peptide Asn-Cys-Trp (NCW) is crucial to improving its intestinal absorption and bioavailability. This study investigated the absorption of NCW through Caco-2 cell monolayers and its interaction with the DPPC bilayers. Results revealed that after a 3 h incubation, the Papp (AP-BL) and Papp (BL-AP) values of NCW at a concentration of 5 mmol/L were (22.24 ± 4.52) × 10-7 and (6.63 ± 2.31) × 10-7 cm/s, respectively, with the transport rates of 1.59 ± 0.32 and 0.62 ± 0.20%, indicating its moderate absorption. NCW was found to be transported via PepT1 and paracellular transport pathways, as evidenced by the significant impact of Gly-Pro and cytochalasin D on the Papp values. Moreover, NCW upregulated ZO-1 mRNA expression. Further investigation of the ZO-1-mediated interaction between NCW and tight junction proteins will contribute to a better understanding of the paracellular transport mechanism of NCW. The interaction between NCW and the DPPC bilayers was predominantly driven by entropy. NCW permeated the bilayers through electrostatic, hydrogen bonding, and hydrophobic interactions, resulting in increased fluidity, flexibility, and disorder as well as phase transition and phase separation of the bilayers.

2.
Heliyon ; 10(8): e29204, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38644858

RESUMO

Carbon felt was used as the anode and WO3/MoS2/FTO (fluorine-doped tin oxide) was used as the photocathode in a photocatalytic microbial fuel cell (PMFC). The photoelectric performance of the WO3/MoS2/FTO photocathode and the removal efficiency of methylene blue (MB) and Cr(VI) mixed pollutants were systematically investigated in the cathode chamber. The results showed that after 12 h of light irradiation in the PMFC with WO3/MoS2/FTO as the photocathode, the removal rates of MB and Cr(VI) were 84.56 and 68.11 %, respectively, which were much higher than those using WO3/FTO as a photocathode (55.57 % and 45.26 %, respectively). The corresponding maximum output power was 33.14 mW/m2, which was 1.85 times that of the WO3/FTO photocathode PMFC. These results can be attributed to the fact that WO3 is an n-type semiconductor and MoS2 is a p-type semiconductor. Analysis of trapping experiments showed that the composite of WO3 and MoS2 formed a Z-scheme heterojunction, which improved the separation efficiency of the photoelectric carriers and enhanced the pollutant removal efficiency of the photocathode. PMFCs are a new and environment-friendly technology for removing pollutants thereby providing an experimental basis for future engineering applications.

3.
Heliyon ; 10(7): e28985, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38617907

RESUMO

Background: Nephronophthisis (NPHP) is a rare autosomal recessive inherited tubulointerstitial nephropathy, the most prevalent genetic cause of end-stage renal disease (ESRD) in children. Convincing evidence indicated that the overall prevalence of NPHP in adult-onset ESRD is very likely to be an underestimation. Therefore, understanding the genetic background and clinicopathologic features of adult-onset NPHP is warranted. Case presentation: we reported one intriguing case with concurrent NPHP3 c.2694-2_2694-1delAG (splicing) variant and c.1082C > G (p.S361C) variant. A 48-year-old male was admitted to our hospital, complained about renal dysfunction for 10 years, and found right renal space-occupying lesion for 1 week. One of the most interesting clinical features is adult-onset ESRD, which differs from previous cases. Another discovery of this study is that the NPHP harboring NPHP3 deletion may be associated with clear cell renal cell carcinoma. Conclusion: In conclusion, we report two mutations in the NPHP3 gene that cause NPHP with adult-onset ESRD and renal clear cell carcinoma in a Chinese family, enriching the clinical features of NPHP.

4.
J Nephrol ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512376

RESUMO

Vascular calcification is a common complication in patients with chronic kidney disease (CKD) and is strongly associated with an increased risk of cardiovascular events and all-cause mortality. Calciphylaxis is a specific and life-threatening manifestation of vascular calcifications that usually affects individuals with advanced kidney function impairment or those undergoing dialysis. Currently, the treatment of vascular calcification and calciphylaxis in CKD lacks approved treatments and focuses on controlling risk factors. SNF472, the intravenous formulation of myo-inositol hexaphosphate, is a novel vascular calcification inhibitor currently undergoing phase 3 clinical trials, demonstrating its ability to directly inhibit the formation of calcium and phosphorus crystals, thereby blocking the production and deposition of ectopic calcium. The efficacy and safety of SNF472 in inhibiting vascular calcification have been confirmed in recent clinical studies. This review summarizes the results of studies related to SNF472 to provide a comprehensive overview of its mechanism of action, efficacy, safety, and ongoing clinical studies.

5.
Angew Chem Int Ed Engl ; 63(18): e202401751, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38436532

RESUMO

CsPbI3 perovskite receives tremendous attention for photovoltaic applications due to its ideal band gap and good thermal stability. However, CsPbI3 perovskite solar cells (PSCs) significantly suffer from photovoltage deficits because of serious interfacial energy losses within the PSCs, which to a large extent affects the photovoltaic performance of PSCs. Herein, a dipolar chemical bridge (DCB) is constructed between the perovskite and TiO2 layers to lower interfacial energy losses and thus improve the charge extraction of PSCs. The results reveal that the DCB could form a beneficial interfacial dipole between the perovskite and TiO2 layers, which could optimize the interfacial energetics of perovskite/TiO2 layers and thus improve the energy level alignment within the PSCs. Meanwhile, the constructed DCB could also simultaneously passivate the surface defects of perovskite and TiO2 layers, greatly lowering interfacial recombination. Consequently, the photovoltage deficit of CsPbI3 PSCs is largely reduced, leading to a record efficiency of 21.86 % being realized. Meanwhile, the operation stability of PSCs is also largely improved due to the high-quality perovskite films with released interfacial tensile strain being obtained after forming the DCB within the PSCs.

6.
J Colloid Interface Sci ; 664: 275-283, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38471190

RESUMO

Planktonic bacterial presence in many industrial and environmental applications and personal health-care products is generally countered using antimicrobials. However, antimicrobial chemicals present an environmental threat, while emerging resistance reduces their efficacy. Suspended bacteria have no defense against mechanical attack. Therefore, we synthesized silica hexapods on an α-Fe2O3 core that can be magnetically-rotated to inflict lethal cell-wall-damage to planktonic Gram-negative and Gram-positive bacteria. Hexapods possessed 600 nm long nano-spikes, composed of SiO2, as shown by FTIR and XPS. Fluorescence staining revealed cell wall damage caused by rotating hexapods. This damage was accompanied by DNA/protein release and bacterial death that increased with increasing rotational frequency up to 500 rpm. Lethal puncturing was more extensive on Gram-negative bacteria than on Gram-positive bacteria, which have a thicker peptidoglycan layer with a higher Young's modulus. Simulations confirmed that cell-wall-puncturing occurs at lower nano-spike penetration levels in the cell walls of Gram-negative bacteria. This approach offers a new way to kill bacteria in suspension, not based on antimicrobial chemicals.


Assuntos
Anti-Infecciosos , Bactérias Gram-Negativas , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Dióxido de Silício/farmacologia , Dióxido de Silício/metabolismo , Bactérias Gram-Positivas/metabolismo , Plâncton , Bactérias , Parede Celular
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124172, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38513316

RESUMO

Hesperidin (HE), a significant flavonoid polyphenolic compound present in citrus plants, exhibits diverse pharmacological effects. Considering the crucial involvement of biological membranes and transporter proteins in the transportation and biological processes of HE, it becomes essential to comprehend the potential mechanisms through which HE interacts with membranes and transporter proteins. In order to simulate the process of active molecule transport, a cell membrane model consisting of 1,2-dipalmitoyl-n-glycero-3-phosphatidylcholine (DPPC) and a transporter protein model of bovine serum albumin (BSA) were employed for investigation. The present study aimed to investigate the mechanism of action of hesperidin (HE) in DPPC and BSA using fluorescence quenching, Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). The localization and interaction of HE within liposomes were also elucidated. Furthermore, the binding of BSA and HE was analyzed through UV/Vis absorption spectroscopy, fluorescence spectroscopy, infrared spectroscopy, and computational biology techniques. Computational biology analysis revealed that the binding between HE and BSA primarily occurred via hydrogen bonding and hydrophobic interactions. This study aimed to investigate the role and mechanism of HE in the DPPC cell membrane model and the BSA transporter protein model, thereby offering novel insights into the action of HE in DPPC and BSA.


Assuntos
Hesperidina , Soroalbumina Bovina/química , Lipossomos/química , Flavonoides/química , 1,2-Dipalmitoilfosfatidilcolina , Espectroscopia de Infravermelho com Transformada de Fourier , Espectrometria de Fluorescência
8.
JACS Au ; 4(2): 592-606, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38425908

RESUMO

Li-doped high-entropy oxides (Li-HEO) are promising electrode materials for Li-ion batteries. However, their electrical conduction in a wide range of temperatures and/or at high pressure is unknown, hindering their applications under extreme conditions. Especially, a clear understanding of the conduction mechanism is needed. In this work, we determined the carrier type of several Li-doped (MgCoNiCuZn)O semiconductor compounds and measured their electrical conduction at temperatures 79-773 K and/or at pressures up to 50 GPa. Three optical band gaps were uncovered from the UV-vis-NIR absorption measurements, unveiling the existence of defect energy levels near the valence band of p-type semiconductors. The Arrhenius-like plot of the electrical conductivity data revealed the electronic conduction in three temperature regions, i.e., the ionization region from 79 to 170 K, the extrinsic region from ∼170 to 300 K, and the intrinsic region at ≥300 K. The closeness of the determined electronic band gap and the second optical band gap suggests that the conduction electrons in the intrinsic region originate from a thermal excitation from the defect energy levels to the conduction band, which determines the electronic conductivity. It was also found that at or above room temperature, ionic conduction coexists with electronic conduction with a comparable magnitude at ambient pressure and that the intrinsic conduction mechanism also operates at high pressures. These findings provide us a fundamental understanding of the band structure and conduction mechanism of Li-HEO, which would be indispensable to their applications in new technical areas.

9.
Adv Sci (Weinh) ; 11(14): e2307749, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38311582

RESUMO

The heart primarily derives its energy through lipid oxidation. In cardiomyocytes, lipids are stored in lipid droplets (LDs) and are utilized in mitochondria, although the structural and functional connections between these two organelles remain largely unknown. In this study, visible evidence have presented indicating that a complex is formed at the mitochondria-LD membrane contact (MLC) site, involving mitochondrion-localized Mfn2 and LD-localized Hsc70. This complex serves to tether mitochondria to LDs, facilitating the transfer of fatty acids (FAs) from LDs to mitochondria for ß-oxidation. Reduction of Mfn2 induced by lipid overload inhibits MLC, hinders FA transfer, and results in lipid accumulation. Restoring Mfn2 reinstates MLC, alleviating myocardial lipotoxicity under lipid overload conditions both in-vivo and in-vitro. Additionally, prolonged lipid overload induces Mfn2 degradation through the ubiquitin-proteasome pathway, following Mfn2 acetylation at the K243 site. This leads to the transition from adaptive lipid utilization to maladaptive lipotoxicity. The experimental findings are supported by clinical data from patients with obesity and age-matched non-obese individuals. These translational results make a significant contribution to the molecular understanding of MLC in the heart, and offer new insights into its role in myocardial lipotoxicity.


Assuntos
GTP Fosfo-Hidrolases , Proteínas de Choque Térmico HSC70 , Gotículas Lipídicas , Metabolismo dos Lipídeos , Miócitos Cardíacos , Humanos , Ácidos Graxos/metabolismo , Hidrolases/metabolismo , Gotículas Lipídicas/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Animais , Camundongos , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Choque Térmico HSC70/metabolismo , Coração , Miócitos Cardíacos/metabolismo
10.
Curr Issues Mol Biol ; 46(2): 990-1009, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38392181

RESUMO

Skin photoaging, resulting from prolonged exposure to ultraviolet radiation, is a form of exogenous aging that not only impacts the aesthetic aspect of the skin but also exhibits a strong correlation with the onset of skin cancer. Nonetheless, the safety profile of non-natural anti-photoaging medications and the underlying physiological alterations during the process of photoaging remain inadequately elucidated. Consequently, there exists a pressing necessity to devise more secure interventions involving anti-photoaging drugs. Multiple studies have demonstrated the noteworthy significance of marine biomolecules in addressing safety concerns related to anti-photoaging and safeguarding the skin. Notably, bioactive peptides have gained considerable attention in anti-photoaging research due to their capacity to mitigate the physiological alterations associated with photoaging, including oxidative stress; inflammatory response; the abnormal expression of matrix metalloproteinase, hyaluronidase, and elastase; and excessive melanin synthesis. This review provides a systematic description of the research progress on the anti-photoaging and skin protection mechanism of marine bioactive peptides. The focus is on the utilization of marine bioactive peptides as anti-photoaging agents, aiming to offer theoretical references for the development of novel anti-photoaging drugs and methodologies. Additionally, the future prospects of anti-aging drugs are discussed, providing an initial reference for further research in this field.

11.
Front Endocrinol (Lausanne) ; 15: 1330942, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38318291

RESUMO

Vascular calcification (VC) has emerged as a key predictor of cardiovascular events in patients with chronic kidney disease (CKD). In recent years, an expanding body of research has put forth the concept of accelerated vascular aging among CKD patients, highlighting the significance of vascular cells senescence in the process of VC. Within the milieu of uremia, senescent vascular endothelial cells (VECs) release extracellular microvesicles (MV) that promote vascular smooth muscle cells (VSMCs) senescence, thereby triggering the subsequent osteogenic phenotypic switch and ultimately contributing to the VC process. In addition, senescent vascular progenitor or stem cells with diminished ability to differentiate into VECs and VSMCS, compromise the repair of vascular integrity, on the other hand, release a cascade of molecules associated with senescence, collectively known as the senescence-associated secretory phenotype (SASP), perpetuating the senescence phenomenon. Furthermore, SASP triggers the recruitment of monocytes and macrophages, as well as adjacent VECs and VSMCs into a pro-adhesive and pro-inflammatory senescent state. This pro-inflammatory microenvironment niche not only impacts the functionality of immune cells but also influences the differentiation of myeloid immune cells, thereby amplifying the reduced ability to effectively clear senescent cells of senescent macrophages, promoted calcification of VSMCs. The objective of this paper is to provide a comprehensive review of the contribution of vascular cell senescence to the emergence and advancement of VC. Gaining a comprehensive understanding of the involvement of cellular senescence within the vessel wall is pivotal, especially when it comes to its intersection with VC. This knowledge is essential for advancing groundbreaking anti-aging therapies, aiming to effectively mitigate cardiovascular diseases.


Assuntos
Insuficiência Renal Crônica , Calcificação Vascular , Humanos , Células Endoteliais , Músculo Liso Vascular , Senescência Celular/genética , Calcificação Vascular/etiologia , Insuficiência Renal Crônica/complicações
12.
ACS Appl Mater Interfaces ; 16(7): 9532-9543, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38345942

RESUMO

Flexible piezoresistive sensors with a porous structure that are used in the field of speech recognition are seldom characterized by both high sensitivity and ease of preparation. In this study, a piezoresistive sensor with a porous structure that is both highly sensitive and can be prepared by using a simple method is proposed for speech recognition. The preparation process utilizes the interaction of bubbles generated by ethanol evaporation and active agents with polydimethylsiloxane to produce a porous flexible substrate. This preparation process requires neither templates nor harsh experimental conditions such as a low temperature and a low pressure. Furthermore, the prepared piezoresistive sensor has excellent properties, such as a high sensitivity (27.6 kPa-1), a satisfactory response time (800 µs), and a good stability (10,000 cycles). When used for speech recognition, more than 1500 vocalizations and silent speech signals obtained from subjects saying numbers from "0" to "9" were collected by the sensor for training a convolutional neural network model. The average accuracy of the recognition reached 94.8%. The simple preparation process and the excellent performance of the prepared flexible piezoresistive sensor endow it with a wide application prospect in the field of speech recognition.


Assuntos
Percepção da Fala , Fala , Humanos , Porosidade , Temperatura Baixa , Etanol
13.
Lab Chip ; 24(4): 738-750, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38192250

RESUMO

Droplet digital PCR (ddPCR) is a powerful method for absolute nucleic acid quantification with high precision and accuracy. However, complicated operational steps have hampered the use and diffusion of ddPCR. Therefore, an automated, easy-to-use, low-sample-consumption, and portable ddPCR platform is urgently needed. This paper proposes a microfluidic ddPCR platform based on a microfluidic chip that can realize the sample-to-result function by switching the rotary valve, achieving the dual function of the flow-focusing structure for droplet generation and readout. Sample, generation oil, and analysis oil were pre-added to the reservoirs. Droplets were generated due to focusing flow, and after passing through the integrated temporary storage bin in the rotary valve, the droplets and oil subsequently entered the collecting tube, improving the droplet-to-oil volume ratio for enhanced thermal cycle performance. Droplets with an average diameter of 107.44 µm and a CV of 2.38% were generated using our chip under the optimal pressures. High-performance thermal cycling was achieved through improvements of the droplet-to-oil volume ratio of the sample, the integrated heating lid, the pure copper heating base, and the temperature-controlling algorithm. Gradient quantification experiments were conducted for the HER2 and CEP17 genes extracted from breast cancer cells, yielding strong linear correlations with R2 values of 0.9996 for FAM and 0.9989 for CY5. Moreover, pronounced linearity was obtained between the detected concentrations of HER2 and CEP17, indicated by a slope of 1.0091 and an R2 of 0.9997, signifying consistent HER2 : CEP17 ratios across various sample dilutions. The outcomes of the quantitative analysis, encompassing the dynamic range and the consistency of the HER2 : CEP17 ratio using our ddPCR platform, meet the standards required for breast cancer assessment and therapy. Our ddPCR platform is automated, portable, and capable of stable droplet generation, high-efficiency amplification, realization of the sample-to-result function based on dual-function flow-focusing structure, and accuracy absolute quantification, underscoring its significant potential for ddPCR analysis in clinical diagnostics.


Assuntos
Neoplasias da Mama , Microfluídica , Humanos , Feminino , Reação em Cadeia da Polimerase/métodos , DNA/genética , Neoplasias da Mama/genética
14.
Clin Kidney J ; 17(1): sfad191, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38186888

RESUMO

Background: The discovery of phospholipase A2 receptor (PLA2R) and its antibody (aPLA2Rab) has paved the way for diagnosing PLA2R-associated membranous nephropathy (PLA2R-MN) with a high specificity of 98%. However, the sensitivity was only 40% to 83.9%, and there is ongoing discussion around determining the optimal threshold for diagnosis. Recent advancements in the use of exosomes, a novel form of "liquid biopsy," have shown great promise in identifying markers for various medical conditions. Methods: Protein mass spectrometry and western blot were applied to verify the existence of PLA2R antigen in the urine exosome. We then evaluated the efficacy of urinary exosomal PLA2R antigen alone or combined with serum aPLA2Rab level to diagnose PLA2R-MN. Results: The urinary exosomes contained a high abundance of PLA2R antigen as evidenced by protein mass spectrometry and western blot in 85 PLA2R-MN patients vs the disease controls (14 secondary MN patients, 22 non-MN patients and 4 PLA2R-negative MN patients) and 20 healthy controls. Of note, urinary exosomal PLA2R antigen abundance also had a good consistency with the PLA2R antigen level in the renal specimens of PLA2R-MN patients. The sensitivity of urinary exosomal PLA2R for diagnosing PLA2R-MN reached 95.4%, whereas the specificity was 63.3%. Combining detection of the urinary exosomal PLA2R and serum aPLA2Rab could develop a more sensitive diagnostic method for PLA2R-MN, especially for patients with serum aPLA2Rab ranging from 2 to 20 RU/mL. Conclusions: Measurement of urinary exosomal PLA2R could be a sensitive method for the diagnosis of PLA2R-MN.

15.
IEEE Trans Med Imaging ; 43(3): 1203-1213, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37962993

RESUMO

Deep learning methods have been successfully used in various computer vision tasks. Inspired by that success, deep learning has been explored in magnetic resonance imaging (MRI) reconstruction. In particular, integrating deep learning and model-based optimization methods has shown considerable advantages. However, a large amount of labeled training data is typically needed for high reconstruction quality, which is challenging for some MRI applications. In this paper, we propose a novel reconstruction method, named DURED-Net, that enables interpretable self-supervised learning for MR image reconstruction by combining a self-supervised denoising network and a plug-and-play method. We aim to boost the reconstruction performance of Noise2Noise in MR reconstruction by adding an explicit prior that utilizes imaging physics. Specifically, the leverage of a denoising network for MRI reconstruction is achieved using Regularization by Denoising (RED). Experiment results demonstrate that the proposed method requires a reduced amount of training data to achieve high reconstruction quality among the state-of-the-art approaches utilizing Noise2Noise.

16.
Clin Nephrol ; 101(2): 93-98, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38032142

RESUMO

A sporadic occurrence of Fanconi syndrome associated with adefovir dipivoxil (ADV) has been reported, particularly when confirmed by renal biopsy. This study presents the case of a 53-year-old man who had been taking ADV 10 mg daily for 10 years to treat chronic hepatitis B (CHB) and subsequently developed Fanconi syndrome. The clinical manifestations included hypophosphatemic osteomalacia, glucosuria, renal tubular acidosis, low-molecular-weight proteinuria, and renal insufficiency. Renal biopsy revealed significant injury to proximal tubular epithelial cells, including vacuolar degeneration and regeneration of tubular epithelial cells. The ultrastructural pathology indicated severe morphological abnormalities of mitochondria, such as densely packed and enlarged mitochondria, with loss, blunting, and disordered arrangement of cristae. Following discontinuation of ADV and supplementation with oral phosphate, hypophosphatemia, glucosuria, and proteinuria were resolved. These findings support the previous hypothesis that ADV-induced nephrotoxicity may involve mitochondrial injury.


Assuntos
Adenina/análogos & derivados , Síndrome de Fanconi , Glicosúria , Hepatite B Crônica , Hipofosfatemia , Organofosfonatos , Osteomalacia , Insuficiência Renal , Masculino , Humanos , Pessoa de Meia-Idade , Síndrome de Fanconi/induzido quimicamente , Síndrome de Fanconi/diagnóstico , Síndrome de Fanconi/complicações , Hepatite B Crônica/tratamento farmacológico , Rim , Hipofosfatemia/induzido quimicamente , Glicosúria/induzido quimicamente , Proteinúria/tratamento farmacológico , Osteomalacia/etiologia , Antivirais/efeitos adversos
17.
Adv Mater ; 36(1): e2306854, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37729595

RESUMO

Perovskite quantum dots (PQDs) have emerged as one of the most promising candidates for next-generation solar cells owing to its remarkable optoelectronic properties and solution processability. However, the optoelectronic properties of PQDs suffer from severe degradation in storage due to the dynamically binding ligands, predominantly affecting photovoltaic applications. Herein, an in situ defect healing treatment (DHT) is reported to effectively rejuvenate aged PQDs. Systematically, experimental studies and theoretical calculations are performed to fundamentally understand the causes leading to the recovered optoelectronic properties of aged PQDs. The results reveal that the I3 - anions produced from tetra-n-octylammonium iodide and iodine could strongly anchor on the surface matrix defects of aged PQDs, substantially diminishing the nonradiative recombination of photogenerated charge carriers. Meanwhile, an DHT could also renovate the morphology of aged PQDs and thus improve the stacking orientation of PQD solids, substantially ameliorating charge carrier transport within PQD solids. Consequently, by using a DHT, the PQD solar cell (PQDSC) yields a high efficiency of up to 15.88%, which is comparable with the PQDSCs fabricated using fresh PQDs. Meanwhile, the stability of PQDSCs fabricated using the rejuvenated PQDs is also largely improved.

18.
Plant Biotechnol J ; 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38048231

RESUMO

As a frequently consumed beverage worldwide, tea is rich in naturally important bioactive metabolites. Combining genetic, metabolomic and biochemical methodologies, here, we present a comprehensive study to dissect the chemical diversity in tea plant. A total of 2837 metabolites were identified at high-resolution with 1098 of them being structurally annotated and 63 of them were structurally identified. Metabolite-based genome-wide association mapping identified 6199 and 7823 metabolic quantitative trait loci (mQTL) for 971 and 1254 compounds in young leaves (YL) and the third leaves (TL), respectively. The major mQTL (i.e., P < 1.05 × 10-5 , and phenotypic variation explained (PVE) > 25%) were further interrogated. Through extensive annotation of the tea metabolome as well as network-based analysis, this study broadens the understanding of tea metabolism and lays a solid foundation for revealing the natural variations in the chemical composition of the tea plant. Interestingly, we found that galloylations, rather than hydroxylations or glycosylations, were the largest class of conversions within the tea metabolome. The prevalence of galloylations in tea is unusual, as hydroxylations and glycosylations are typically the most prominent conversions of plant specialized metabolism. The biosynthetic pathway of flavonoids, which are one of the most featured metabolites in tea plant, was further refined with the identified metabolites. And we demonstrated the further mining and interpretation of our GWAS results by verifying two identified mQTL (including functional candidate genes CsUGTa, CsUGTb, and CsCCoAOMT) and completing the flavonoid biosynthetic pathway of the tea plant.

19.
IEEE Trans Biomed Eng ; PP2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38090865

RESUMO

OBJECTIVE: Information on the metabolism of tissues in healthy and diseased states plays a significant role in the detection and understanding of tumors, neurodegenerative diseases, diabetes, and other metabolic disorders. Hyperpolarized carbon-13 magnetic resonance imaging (13C-HPMRI) and deuterium metabolic imaging (2H-DMI) are two emerging X-nuclei used as practical imaging tools to investigate tissue metabolism. However due to their low gyromagnetic ratios (ɣ13C = 10.7 MHz/T; ɣ2H = 6.5 MHz/T) and natural abundance, such method required a sophisticated dual-tuned radiofrequency (RF) coil. METHODS: Here, we report a dual-tuned coaxial transmission line (CTL) RF coil agile for metabolite information operating at 7T with independent tuning capability. The design analysis has demonstrated how both resonant frequencies can be individually controlled by simply varying the constituent of the design parameters. RESULTS: Numerical results have demonstrated a broadband tuning range capability, covering most of the X-nucleus signal, especially the 13C and 2H spectra at 7T. Furthermore, in order to validate the feasibility of the proposed design, both dual-tuned 1H/13C and 1H/2H CTLs RF coils are fabricated using a semi-flexible RG-405 .086" coaxial cable and bench test results (scattering parameters and magnetic field efficiency/distribution) are successfully obtained. CONCLUSION: The proposed dual-tuned RF coils reveal highly effective magnetic field obtained from both proton and heteronuclear signal which is crucial for accurate and detailed imaging. SIGNIFICANCE: The successful development of this new dual-tuned RF coil technique would provide a tangible and efficient tool for ultrahigh field metabolic MR imaging.

20.
Front Microbiol ; 14: 1294055, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38143857

RESUMO

Background: Mycoplasmas are among the smallest prokaryotic microbes that can grow and proliferate on non-living media. They have reduced genomes, which may be associated with a concomitant reduction in their metabolic capacity. Mycoplasma capricolum subsp. capripneumoniae (Mccp) and Mycoplasma capricolum subsp. capricolum (Mcc), both belong to the Mycoplasma mycoides cluster, are significant important pathogenic Mycoplasma species in veterinary research field. They share high degree of genome homology but Mcc grows markedly faster and has higher growth titer than Mccp. Methods: This study investigated the metabolites of these two pathogenic bacteria from the middle and late stages of the logarithmic growth phase through liquid chromatography-mass spectrometry-based metabolomics and targeted energy metabolomics. The multivariate analysis was conducted to identify significant differences between the two important Mycoplasma species. Results: A total of 173 metabolites were identified. Of them, 33 and 34 metabolites involved in purine and pyrimidine, pyruvate metabolism, and amino acid synthesis were found to significantly differ in the middle and late stages, respectively. The abundance of fructose 1,6-bisphosphate, ADP, and pyruvate was higher in Mcc than in Mccp during the whole logarithmic period. Lactate was upregulated in slow-growing Mccp. The pH buffering agent N-[2-hydroxyethyl]piperazine-N'-[2-ethanesulfonic acid] added to media effectively prevented pH reduction and increase bacterial viability and protein biomass. The multivariate analysis revealed that the two Mycoplasma species significantly differed in glucose metabolism, growth factor transport and metabolism, cholesterol utilization, and environmental regulation. Conclusion: The study data are beneficial for understanding the metabolomic characteristics of these two crucial Mycoplasma species and shedding more light on mycoplasma metabolism, and serve as a resource for the pathogenesis and development of related vaccines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...